509. Biphenylenes. Part VI. ${ }^{1}$ Synthesis of 2,3-Benzobiphenylene from Biphenylene.

By Wilson Baker, J. W. Barton, J. F. W. McOmie, and R. J. G. Searle.

2,3-Benzobiphenylene (III; $\mathrm{R}=\mathrm{H}$) has been made from biphenylene by an unambiguous synthesis. The dehydrobromination of $\alpha \alpha \alpha^{\prime} \alpha^{\prime}$-tetra-bromo-o-xylene has been shown to yield 3,4 -dibromo-1, 2 -benzobiphenylene ($\mathrm{V} ; \mathrm{R}=\mathrm{Br}$) in addition to the previously reported compounds (III; $\mathrm{R}=$ Br) and (IV). The structure assigned to the dibromo-compound has been confirmed by synthesis from 3 -bromo-1,2-benzobiphenylene ($\mathrm{V} ; \mathrm{R}=\mathrm{H}$).

Previous studies have shown ${ }^{2,3}$ that biphenylene undergoes electrophilic substitution in position 2, and that its bond structure is best represented as in formula ($\mathrm{I} ; \mathrm{R}=\mathrm{H}$). ${ }^{4}$ A synthesis of 2,3-benzobiphenylene from biphenylene has been based on these facts.

Reaction of biphenylene with β-carbomethoxypropionyl chloride under Friedel-Crafts conditions, followed by hydrolysis, gave 2 - β-carboxypropionylbiphenylene (I ; $\mathrm{R}=$ $\mathrm{CO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{H}$) which could be oxidised to the known biphenylene-2-carboxylic acid. ${ }^{2}$ Reduction of the keto-acid gave 2-3'-carboxypropylbiphenylene ($\mathrm{I} ; \mathrm{R}=$ $\mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{H}$), and this was then cyclised by polyphosphoric acid to the ketone

(I)

(II)

(IH)
(II). Reduction to the tetrahydro-hydrocarbon and subsequent dehydrogenation by selenium gave 2,3-benzobiphenylene (III; R=H). A less satisfactory route from the ketone involved reduction by sodium borohydride followed by dehydration of the resulting alcohol and finally dehydrogenation with chloranil.

Although 2-3'-carboxypropylbiphenylene could possibly cyclise in two ways, previous work ${ }^{4}$ indicated that it should give the ketone (II). This expectation was confirmed by the close similarity of the ultraviolet spectrum (cf. Table) of the ketone (II) with that of 2 -acetylbiphenylene. Likewise the infrared spectra of the ketone (II) and of its reduction product showed the presence of one or more " isolated " aromatic C-H groups, whereas if cyclisation had occurred on to position 1 the infrared spectra of the two compounds would have shown a pair of adjacent aromatic $\mathrm{C}-\mathrm{H}$ groups. Final confirmation of the structure of 2,3 -benzobiphenylene, m. p. $242-243^{\circ}$, comes from the fact that it is different from the known 1,2 -benzobiphenylene, m. p. $72-72 \cdot 8^{\circ} .{ }^{5}$

During the course of our work, Jensen and Coleman ${ }^{6}$ described, without experimental details, the reaction of $\alpha \alpha \alpha^{\prime} \alpha^{\prime}$-tetrabromo- α-xylene with potassium t -butoxide to give a mixture of 1,4 -dibromo-2,3-benzobiphenylene (III; $\mathrm{R}=\mathrm{Br}$) and 1,2,5,6-tetrabromo-3,4:7,8-dibenzotricyclo[$\left.4,2,0,0^{2,5}\right]$ octadiene (IV). They showed that the dibromo-compound (III; $\mathrm{R}=\mathrm{Br}$) could be converted by successive treatment with n-butyl-lithium and methanol into 2,3 -benzobiphenylene (III; $\mathrm{R}=\mathrm{H}$) whose structure was established by treatment with Raney nickel, whereby 2-phenylnaphthalene was obtained in $95 \cdot 2 \%$ yield.

[^0]The work of Jensen and Coleman has been confirmed and the identity of the two specimens of 2,3 -benzobiphenylene has been established. It may be noted that the isomeric 1,2 -benzobiphenylene ${ }^{5}$ with Raney nickel gives a mixture of 1- (21%) and 2 -phenylnaphthalene (50%). In our repetition of the work of Jensen and Coleman, in addition to (III; $\mathrm{R}=\mathrm{Br}$) and (IV) there was also obtained an orange compound, m. p. 147-148, $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{Br}_{2}$, which proved to be 3,4 -dibromo-1,2-benzobiphenylene ($\mathrm{V} ; \mathrm{R}=\mathrm{Br}$). Its ultraviolet absorption spectrum was closely similar to that of 3 -bromo-1,2-benzobiphenylene ($\mathrm{V} ; \mathrm{R}=\mathrm{H}$), and its infrared spectrum showed strong bands at 741 and $752 \mathrm{~cm} .^{-1}$, corresponding to 1,2 -disubstituted benzene rings. 3,4-Dibromo-1,2-benzobiphenylene (V; $R=B r$) was also synthesised from 3 -bromo-1,2-benzobiphenylene ${ }^{7}$ by reaction with bromine to give the pentabromo-compound (VI), followed by treatment with potassium t-butoxide.

(IV)

(V)

(VI)

Cava and Muth ${ }^{8}$ recently discussed the mechanism of the dehydrobromination of $\alpha \alpha \alpha^{\prime} \alpha^{\prime}$-tetrabromo- 0 -xylene to give compounds (III; $R=B r$) and (IV). They concluded that $1,1,2$-tribromobenzocyclobutene could not be an intermediate in the formation of these two compounds since a synthetic sample of $1,1,2$-tribromobenzocyclobutene reacted with potassium t-butoxide to give 3,4 -dibromo-1,2-benzobiphenylene, m. p. $149-150^{\circ}$. We agree with this conclusion but nevertheless the formation of 3,4 -dibromo-1,2-benzobiphenylene which we have observed strongly suggests that the dehydrobromination

Ultraviolet absorption maxima in 95% ethanol.

2-Acetyl ${ }^{\text {Biphenylene deriv. }}$.	$\lambda(\mathrm{m} \mu)$	$\log _{10} \varepsilon$	$\lambda(\mathrm{m} \mu)$	$\log _{10} \varepsilon$	$\lambda(\mathrm{m} \mu)$	$\log _{10} \varepsilon$
	236	$4 \cdot 61$	348	$3 \cdot 63$	363	3•80
2- β-Carboxypropionyl	263	$4 \cdot 64$	349	$3 \cdot 62$	365	$3 \cdot 77$
Ketone (II)	233	$4 \cdot 40$	310	$3 \cdot 25$	345	$3 \cdot 70$
	270	$4 \cdot 75$	327	$3 \cdot 45$	363	$3 \cdot 89$
2-3'-Carboxypropyl	252	$4 \cdot 86$	334	$3 \cdot 39$	346	$3 \cdot 62$
					362	$3 \cdot 82$
$3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}$-Tetrahydro-2,3-benzo	246	4.58	300	2.92	368	3.95
	255	$4 \cdot 87$	348	$3 \cdot 78$		
3',4'-Dihydro-2,3-benzo...........	254	$4 \cdot 83$	274	$4 \cdot 60$	349	3.92
	266	$4 \cdot 63$	333 infl.	$3 \cdot 63$	367	4.12
					381	3.98
2,3-Benzo	255	4.87	285	$4 \cdot 40$	348	$3 \cdot 71$
	264	$4 \cdot 89$	296	$4 \cdot 55$	367	3.83
			331	$3 \cdot 68$	386	$3 \cdot 78$
1,2-Benzo ${ }^{5}$	254	4.58	279	$4 \cdot 47$	359	$3 \cdot 41$
	262	$4 \cdot 77$	291	$4 \cdot 48$	375	$3 \cdot 71$
					393	$3 \cdot 87$
3-Bromo-1,2-benzo	243	$4 \cdot 65$	285	$4 \cdot 44$	347	3.08
	255	$4 \cdot 61$	295	$4 \cdot 45$	380	$3 \cdot 75$
	264	$4 \cdot 73$	330	$2 \cdot 84$	399	$3 \cdot 89$
3,4-Dibromo-1,2-benzo	229	$4 \cdot 38$	292	$4 \cdot 38$	384	$3 \cdot 56$
	266	$4 \cdot 67$	304	$4 \cdot 39$	402	$3 \cdot 66$

proceeds by two routes simultaneously, one route leading to compounds (III; $\mathrm{R}=\mathrm{Br}$) and (IV), and the other to 1,1,2-tribromobenzocyclobutene which then gives compound ($\mathrm{V} ; \mathrm{R}=\mathrm{Br}$).

[^1]
Experimental

2- β-Carboxypropionylbiphenylene ($\mathrm{I} ; \quad \mathrm{R}=\mathrm{CO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{H}$).-Biphenylene ($4 \cdot 0 \mathrm{~g}$.) in tetrachloroethane (20 ml .) was added gradually at 0° to a stirred solution of β-carbomethoxypropionyl chloride ($4 \cdot 4 \mathrm{~g}$.) in tetrachloroethane (30 ml .) containing aluminium chloride (8.8 g .). After being stirred for 4 hr ., the mixture was kept overnight, ice (ca. 250 g .) and 4 N -hydrochloric acid (300 ml .) were then added, and the mixture was steam-distilled. The solid residue was collected and extracted continuously with ethanol. Dilution of the extract with water gave $2-\beta$-carbomethoxypropionylbiphenylene, yellow needles, m. p. $130-132^{\circ}$ (from methanol). Hydrolysis with 10% sodium hydroxide (200 ml .) for 2 hr . yielded $2-\beta$-carboxypropionylbiphenylene ($5.5 \mathrm{~g} ., 75 \%$) which separated from ethanol as yellow needles, m. p. 215° (decomp.) (Found: C, 75.7; H, 4.7. $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{3}$ requires C, 76.2; H, 4.8%), $v_{\text {max. }}$ 740vs, 815vs, and 881w $\mathrm{cm} .^{-1}$ (1,2 -di- and $1,2,4$-tri-substituted benzene rings).

Oxidation of the keto-acid by alkaline potassium permanganate gave biphenylene-2carboxylic acid, m. p. alone or mixed with an authentic sample, ${ }^{2} 223-224^{\circ}$.

2-3'-Carboxypropylbiphenylene (I ; $\mathrm{R}=\mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{H}$).-A mixture of the preceding keto-acid (1.35 g.), water (50 ml .), concentrated hydrochloric acid (20 ml .), acetic acid (5 ml.), toluene (40 ml .), and amalgamated zinc (10 g .) was boiled under reflux for 30 hr ., hydrochloric acid (5 ml .) being added every 6 hr . The aqueous layer was extracted with ether ($3 \times 50 \mathrm{ml}$.), and the combined extracts and toluene layer were steam-distilled after the addition of 10% aqueous sodium hydroxide ($\mathbf{1 5 0} \mathrm{ml}$.). The residual solution was acidified, giving $2-3^{\prime}$-carboxypropylbiphenylene ($0.75 \mathrm{~g} ., 58 \%$), m. p. $115-117^{\circ}$. Recrystallisation from aqueous methanol gave pale yellow needles, m. p. 118.5-119.5 (Found: C, 80.3; H, 5.8. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}$ rèquires $\mathrm{C}, 80.7 ; \mathrm{H}, 5.9 \%$), $\mathrm{v}_{\text {max. }} 733 \mathrm{vs}, 817 \mathrm{~s}$, and $863 \mathrm{w} \mathrm{cm} .^{-1}$ (1,2 -di- and $1,2,4$-tri-substituted benzene rings).
$3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}-$ Tetrahydro- 3^{\prime}-oxo-2,3-benzobiphenylene (II). The preceding acid ($1 \cdot 2 \mathrm{~g}$.) and polyphosphoric acid (30 g .) were stirred at 80° for 1 hr ., and the dark red molten mass was treated with water and then extracted with ether ($3 \times 250 \mathrm{ml}$.). The extracts, after being washed with aqueous sodium hydrogen carbonate, yielded a solid ($1 \cdot 0 \mathrm{~g}$.) which was purified by passage of its benzene solution through a column of alumina. The product from the eluate crystallised from methanol, giving the ketone (II) as yellow plates ($0.7 \mathrm{~g} ., 63 \%$), m. p. $134-135^{\circ}$ (Found: C, $87.0 ; \mathrm{H}, 5 \cdot 7 . \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}$ requires $\mathrm{C}, 87 \cdot 3 ; \mathrm{H}, 5 \cdot 5 \%$), $\nu_{\text {max }} 750 \mathrm{~s}$ and $860 \mathrm{w} \mathrm{cm} .^{-1}$ (1,2 -di- and $1,2,4,5$-tetra-substituted benzene rings).
$3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}-$ Tetrahydro-2,3-benzobiphenylene.-A mixture of the ketone (II) (0.21 g .), toluene (40 ml .), concentrated hydrochloric acid (10 ml .), acetic acid (10 ml .), water (1 ml.), and amalgamated zinc (10 g .) was boiled under reflux for 30 hr ., hydrochloric acid (5 ml .) being added every 6 hr . The toluene layer and ethereal extracts of the aqueous layer yielded a solid which was purified by chromatography in benzene on alumina. The product (87 mg .) crystallised from aqueous methanol, giving $3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}$-tetrahydro-2,3-benzobiphenylene as a yellow powder, m. p. $109.5-111^{\circ}$ (Found: C, $93.0 ;$ H, $6.9 . \mathrm{C}_{16} \mathrm{H}_{14}$ requires C, $93.2 ; \mathrm{H}, 6.8 \%$), $v_{\text {max. }}$ $734 \mathrm{~s}, 858 \mathrm{~m}$, and $870 \mathrm{scm} .^{-1}$ ($1,2-\mathrm{di}$ - and $1,2,4,5$-tetrasubstituted benzene rings).

2,3-Benzobiphenylene (III; $\mathrm{R}=\mathrm{H}$).-(a) The tetrahydro-compound (0.2 g .) was heated with selenium (1.0 g .) at $270-340^{\circ}$ for 24 hr . The product was extracted into benzene and treated with a benzene solution of 2,4,7-trinitrofluorenone. Addition of methanol gave the red trinitrofluorenone complex, m. p. 214-216 ${ }^{\circ}$, which was dissolved in benzene and chromatographed on alumina. The liberated 2,3 -benzobiphenylene ($0.04 \mathrm{~g} ., 20 \%$) had m. p. 242- 243° alone or admixed with a sample made by the method of Jensen and Coleman. ${ }^{6}$ The infrared spectrum showed bands at 742 s and $880 \mathrm{~s} \mathrm{~cm} .^{-1}$, corresponding to 1,2 -di- and $1,2,4,5$-tetrasubstituted benzene rings.
(b) Sodium borohydride (3.0 g .) in methanol (50 ml .) was added slowly to a refluxing solution of the ketone (II) ($1 \cdot 0 \mathrm{~g}$.) in methanol (35 ml .). After being boiled for 15 min . more, the solution was concentrated and poured on ice (200 g .) and concentrated hydrochloric acid (25 ml .). Extraction of the mixture with ether gave a yellow oil which was boiled with pyridine (10 ml .) and phosphoryl chloride (5 ml .) for $\frac{1}{2} \mathrm{hr}$., then poured on ice (200 g .), and the solid was collected. $3^{\prime}, 4^{\prime}$-Dihydro-2,3-benzobiphenylene crystallised from light petroleum (b. p. $60-80^{\circ}$) as a yellow solid (0.33 g ., 38%), m. p. 214- 215° (Found: C, $93 \cdot 8$; H, $5 \cdot 7 . \mathrm{C}_{16} \mathrm{H}_{12}$ requires C, $94 \cdot 1$; H, $5 \cdot 9 \%$).

The dihydro-compound (0.1 g .) and chloranil (0.5 g .) in xylene (15 ml .) were boiled under
reflux for 15 hr . The dark red solution was concentrated and pentane (b. p. 25-40 $)$ was added. The precipitated quinhydrone was removed by filtration, the solution was evaporated, and the 2,3-benzobiphenylene isolated as before as the trinitrofluorenone complex, m. p. 213-215 ${ }^{\circ}$. Regeneration from the complex gave 2,3-benzobiphenylene (15 mg ., 15%), m. p. and mixed m. p. $242-243^{\circ}$.

Action of Potassium t-Butoxide on $\alpha \alpha \alpha^{\prime} \alpha^{\prime}$-Tetrabromo-o-xylene.-Tetrabromo-o-xylene (20 g .) was added with stirring to a solution of potassium t-butoxide (made from 14 g . of potassium and 270 ml . of t-butyl alcohol) at 70° under nitrogen. After 10 min . the mixture was poured on ice, and the excess of base neutralised by addition of glacial acetic acid. The product (10 g .) was fractionally crystallised from ethanol, giving (a) 1,4-dibromo-2,3-benzobiphenylene (III; $\mathrm{R}=\mathrm{Br}$) ($4.85 \mathrm{~g} ., 57 \%$), golden-yellow needles, m. p. 222-223 ${ }^{\circ}$ (Found: $\mathrm{C}, 53 \cdot 2 ; \mathrm{H}, 2 \cdot 32$. Calc. for $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{Br}_{2}: \mathrm{C}, 53 \cdot 3 ; \mathrm{H}, 2.32 \%$), (b) yellow needles and white plates, which were then crystallised from light petroleum (b. p. $60-80^{\circ}$; charcoal), giving the tetra-bromo-compound (IV) (4.0 g., 32.5%) as white plates, m. p. 214° decomp. (Found: C, 36.7; $\mathrm{H}, \mathbf{1} \cdot 7$. Calc. for $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{Br}_{4}$: C, $36.9 ; \mathrm{H}, \mathbf{1} \cdot 5 \%$). The light petroleum mother-liquors, after chromatography on alumina and elution with light petroleum (b. p. $80-100^{\circ}$) containing 10% of benzene, gave a small quantity of the tetrabromo-compound (IV) and by further elution with light petroleum-benzene (1:1) there was obtained an orange solid which, after recrystallisation from aqueous ethanol and chromatographic purification as before, gave 3,4-dibromo-1,2-benzobiphenylene ($0.35 \mathrm{~g} ., 4 \%$) as orange needles, m. p. $147-148^{\circ}$ (sublimes near m. p.) (Found: C, $52 \cdot 9 ; \mathrm{H}, 2 \cdot 28$. Calc. for $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{Br}_{2}$: C, $53 \cdot 3 ; \mathrm{H}, 2 \cdot 22 \%$).

Conversion of the Tetrabromo-compound (IV) into 1,4-Dibromo-2,3-benzobiphenylene (III; $\mathrm{R}=\mathrm{Br})$.-The tetrabromo-compound (IV) (0.5 g .) in o-dichlorobenzene (50 ml .) was boiled for 4 hr ., then cooled; ether was added and the solution washed successively with water, aqueous sodium hydrogen carbonate, and aqueous sodium metabisulphite. Removal of both organic solvents under reduced pressure yielded a residue, which was dissolved in light petroleum (b. p. $80-100^{\circ}$) and was filtered through a column of alumina. The filtrate yielded orange-brown needles of 1,4 -dibromo-2,3-benzobiphenylene ($0 \cdot 16 \mathrm{~g}$.), m. p. and mixed m. p. 222-223 ${ }^{\circ}$ after one recrystallisation from ethanol.

Conversion of 3 -Bromo- into 3,4 -Dibromo-1,2-benzobiphenylene.-Bromine ($3 \cdot 2 \mathrm{~g}$.) in carbon tetrachloride (15 ml .) was added to a stirred solution of 3 -bromo- 1,2 -benzobiphenylene ${ }^{7}(2 \cdot 0 \mathrm{~g}$.) in the same solvent (30 ml .). The mixture was stirred for 2 hr . and the solid was then collected, washed with pure solvent, and recrystallised from benzene. The pentabromo-compound (VI) formed prisms, m. p. $177-178^{\circ}$ (decomp.) (Found: C, $\mathbf{3 1 \cdot 6}$; $\mathrm{H}, 1 \cdot 4 . \mathrm{C}_{16} \mathrm{H}_{9} \mathrm{Br}_{5}$ requires $\mathrm{C}, 31.9 ; \mathrm{H}, 1.5 \%$). This compound (1.0 g .) was added to a stirred solution of potassium t-butoxide (from 2.0 g . of potassium and 100 ml . of t-butyl alcohol) at 50° and boiled for 4 hr ., then cooled and poured into ice-water (400 ml .). The solid crystallised from ethanol, giving 3,4 -dibromo-1,2-benzobiphenylene as orange needles, m. p. and mixed m. p. $147-148^{\circ}$. The ultraviolet and infrared spectra of the dibromo-compound prepared by this method were identical with those of the dibromo-compound made from $\alpha \alpha \alpha^{\prime} \alpha^{\prime}$-tetrabromo- o-xylene.

The University, Bristol.
[Received, December 28th, 1961.]

[^0]: ${ }^{1}$ Part V, Baker, Barton, McOmie, Penneck, and Watts, J., 1961, 3986.
 ${ }^{2}$ Baker, Boarland, and McOmie, J., 1954, 1476.
 ${ }^{3}$ Baker, Barton, and McOmie, J., 1958, 2666.
 ${ }^{4}$ Baker, McOmie, Preston, and Rogers, J., 1960, 414.
 ${ }^{5}$ Cava and Stucker, J. Amer. Chem. Soc., 1955, 7r\%, 6022.
 ${ }^{6}$ Jensen and Coleman, Tetrahedron Letters, 1959, No. 20, 7.
 4 Q

[^1]: ${ }^{7}$ Cava and Stucker, J. Amer. Chem. Soc., 1957, 79, 1706.
 ${ }^{8}$ Cava and Muth, Tetrahedron Letters, 1961, 140.

